3D Finite Element Modeling of High Speed Machining

نویسندگان

  • Angelos P. Markopoulos
  • K. Kantzavelos
  • N. I. Galanis
  • Dimitrios E. Manolakos
چکیده

This paper presents simulation of High Speed Machining of steel with coated carbide tools. More specifically, Third Wave Systems AdvantEdge commercial Finite Element Method code is employed in order to present turning models, under various machining conditions. As a novelty, the proposed models for High Speed Machining of steel are three-dimensional and are able to provide predictions on cutting forces, tool and workpiece temperatures, chip formation, and chip morphology. Model validation is achieved through experimental work carried out under the same conditions as the ones used in modeling. For the experimental work, the principles for design of experiment were used in order to minimize the required amount of experiments and obtain useful results at the same time. Furthermore, a Taguchi analysis is carried out based on the results. The analysis indicates that there is a good agreement between experiment and modeling, and the proposed models can be further employed for the prediction of a range of machining parameters, under similar conditions. DOI: 10.4018/978-1-4666-1867-1.ch011

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental and 3D Finite Element Analysis of a Slotless Air-Cored Axial Flux PMSG for Wind Turbine Application

In this research paper, the performance of an air-cored axial flux permanent magnet synchronous generator is evaluated for low speed, direct drive applications using 3D finite element modeling and experimental tests. The structure of the considered machine consists of double rotor and coreless stator, which results in the absence of core losses, reduction of stator weight and elimination of cog...

متن کامل

Finite element modeling of 3 D turning of titanium

The finite element modeling and experimental validation of 3D turning of grade two commercially pure titanium are presented. The Third Wave AdvantEdge machining simulation software is applied for the finite element modeling. Machining experiments are conducted. The measured cutting forces and chip thickness are compared to finite element modeling results with good agreement. The effects of cutt...

متن کامل

Finite Element Modeling to Verify Residual Stress in Orthogonal Machining

The aim of this thesis paper, to create a numerical model to examine the residual stresses induced by orthogonal machining in the finished work piece and the model is validated by comparing with experimental result. The finite element method is used to simulate and analyze the residual stresses induced by a orthogonal metal cutting process. A Dynamics explicit time integration technique with Ar...

متن کامل

Manufacturing of Femoral Heads from Ti-6Al-4V Alloy with High Speed Machining: 3D Finite Element Modelling and Experimental Validation

Titanium alloys are used for the manufacturing of femoral heads for orthopaedic implants. Poor machinability of these materials, especially at high speeds, creates the need for more detailed investigations on this subject. The at hand study analyzes the construction of 3D Finite Element Method (FEM) models pertaining to the manufacturing of femoral heads made from Ti-6Al-4V. For this purpose a ...

متن کامل

Finite Element Modeling and Experimental Study of the Spline Tube Forming

Metal forming processes, compared with machining ones, reduce production steps and increase manufacturing speed in addition to saving raw material. In this paper, forming process of column of a steering mechanism is investigated by finite element analyses and experimental tests; and optimum die design parameters are found. Forming process parameters including die opening angle, bearing length, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJMMME

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011